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Abstract

Fine-grained image classification is a challenging task

due to the large intra-class variance and small inter-class

variance, aiming at recognizing hundreds of sub-categories

belonging to the same basic-level category. Most existing

fine-grained image classification methods generally learn

part detection models to obtain the semantic parts for bet-

ter classification accuracy. Despite achieving promising

results, these methods mainly have two limitations: (1)

not all the parts which obtained through the part detec-

tion models are beneficial and indispensable for classifi-

cation, and (2) fine-grained image classification requires

more detailed visual descriptions which could not be pro-

vided by the part locations or attribute annotations. For ad-

dressing the above two limitations, this paper proposes the

two-stream model combining vision and language (CVL)

for learning latent semantic representations. The vision

stream learns deep representations from the original visual

information via deep convolutional neural network. The

language stream utilizes the natural language descriptions

which could point out the discriminative parts or charac-

teristics for each image, and provides a flexible and com-

pact way of encoding the salient visual aspects for distin-

guishing sub-categories. Since the two streams are comple-

mentary, combining the two streams can further achieves

better classification accuracy. Comparing with 12 state-of-

the-art methods on the widely used CUB-200-2011 dataset

for fine-grained image classification, the experimental re-

sults demonstrate our CVL approach achieves the best per-

formance.

1. Introduction

Fine-grained image classification aims to recognize sub-

categories under some basic-level categories. Models of

fine-grained image classification have made great progress

in recent years[1, 2, 3, 4, 5], due to the progress of deep

neural networks. And on the data side, more fine-grained
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Figure 1. Examples from CUB-200-2011. Note that it is a techni-

cally challenging task even for humans to categorize them due to

large intra-class variance and small inter-class variance.

domains have been covered, such as bird types [6, 7], dog

species [8], plant breeds [9] , car types [10] and aircraft

models [11].It is easy for an inexperienced person to recog-

nize basic-level categories such as bird, flower and car, but

highly hard to recognize 200 or even more sub-categories.

Consequently, fine-grained image classification is a techni-

cally challenging task, due to the large intra-class variance

and small inter-class variance, as shown in Figure 1.

The sub-categories are generally same in global appear-

ance, and distinguished by the subtle and local differences,

such as the color of abdomen, the shape of toe and the tex-

ture of feather for bird. These subtle differences are located

at the regions of object or its parts, so the localization of ob-

ject and its parts is crucial for fine-grained image classifica-

tion. A two-stage learning framework is adopted by most of
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the existing methods: the first stage is to localize the object

or its discriminative parts, and the second stage is to extract

the deep features of the object or its parts through Convolu-

tional Neural Network (CNN) and train a classifier for the

final prediction. However, these methods mainly have two

limitations. First, parts are crucial for achieving better ac-

curacy, but not all of them are beneficial and indispensable.

Huang et al. [1] show that the classification accuracy de-

clines when the number of parts increases from 8 to 15 in

the experiments of their Part-stacked CNN method. Zhang

et al. [5] pick only 6 parts in the experiment for achieving

the best classification accuracy. And Zhang et al. [3] only

use the head and body parts for classification in Part-based

R-CNN. Generally speaking, the number of the parts used

in the experiments is highly empirical. This is highly lim-

ited in flexibility, and difficult for generalizing to the other

datasets or domains. Second, fine-grained image classifica-

tion requires more detailed visual descriptions which could

not be provided by the part locations or attribute annota-

tions. The part locations could not point out which part is

the discriminative parts for sub-categories recognition and

tell the discriminative features, such as the color of bill and

the shape of wing. The attribute annotations may tell us the

color of bill, but they do not tell us whether the bill is sig-

nificantly important for distinguishing sub-categories than

other parts. Hence, we need a kind of promising informa-

tion to tell us the attributes as well as the importances of

the parts, and further facilitate the classification accuracy.

Fortunately, text descriptions from natural language satis-

fies the above promising requirements.

How to exactly relate the natural language descriptions

to the visual content of images is the key of image classi-

fication. Inspired by the progress of the cross-modal anal-

ysis which reduces the multi-modal representation gap be-

tween visual information and natural language descriptions,

this paper proposes a two-stream model combining vision

and language (CVL) for learning latent semantic represen-

tations. The vision stream first localizes the object of image

via saliency extraction and co-segmentation, and then learns

deep representations of the original image and its discrim-

inative object via deep convolutional neural network. The

language stream utilizes the cross-modal analysis to learn

the correlation between the natural language descriptions

and the discriminative parts, and provides a flexible and

compact way of encoding the salient visual aspects for dis-

tinguishing sub-categories. Vision stream focuses on the lo-

cations of the discriminative regions, while language stream

focuses on the attributes of the discriminative regions. They

are complementary, combining the two streams further ex-

ploit the correlation between visual feature and nature lan-

guage descriptions, and enhances their mutual promotion to

achieve better classification accuracy. Comparing with 12

state-of-the-art methods on the widely used CUB-200-2011

dataset for fine-grained image classification, the experimen-

tal results demonstrate our CVL approach achieves the best

performance.

The rest of this paper is organized as follows: Section II

briefly reviews related works on fine-grained image classi-

fication and cross-modal analysis. Section III presents our

proposed CVL approach, and Section IV introduces the ex-

periments as well as the results analyses. Finally Section V

concludes this paper.

2. Related Work

2.1. Finegrained Image Classification

Most existing works follow the pipeline: first localizing

the object or its parts, and then extracting discriminative

features for fine-grained image classification. Some fine-

grained image classification datasets, e.g. CUB-200-2011

[7], have the detailed annotations: object annotation (i.e.

bounding box of object) and parts annotations (i.e. parts lo-

cations), an intuitive idea is that using these annotations for

the localizations of object and its parts. Object annotation

is used in the works of [12, 13] to learn part detectors in an

unsupervised or latent manner. And even part annotations

are used in these methods [14, 15]. Since the annotations of

the testing image are not available in practical applications,

some researchers use the object or part annotations only

at training stage and no knowledges of any annotations at

testing stage. Object and Part annotations are directly used

in training phase to learn a strongly supervised deformable

part-based model [16] or directly used to fine-tune the pre-

trained CNN model [17]. Further more, Krause et al. [18]

only use object annotation at training stage to learn the part

detectors, then localize the parts automatically in the testing

stage. Recently, there are some promising works attempting

to learn the part detectors under the weakly supervised con-

dition, which means that neither object nor part annotations

are used in both training and testing phase. These works

make it possible to put the fine-grained image classifica-

tion into practical applications. Simon et al. [19] propose a

neural activation constellations part model (NAC) to local-

ize parts with constellation model. Xiao et al. [2] propose

a two-level attention model, which combines two level at-

tentions to select relevant proposals to the object and the

discriminative parts. And Zhang et al. [5] incorporate deep

convolutional filters for both part detection and description.

The problem of fine-grained image classification is still far

from solved.

2.2. Crossmodal analysis

With the rapid growth of multimedia information, the

cross-modal data, e.g. image, text, video and audio, has

been the main form of the big data. Cross-modal data car-

ries different kinds of information, which needs to be in-
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Figure 2. Overview of our CVL approach. The two-stream model conducts on the original images and their object localizations. One learns

the deep representations directly from the vision information. The other learns the salient visual aspects for distinguishing sub-categories

via jointly modeling vision and language. The classification results of the two streams are merged in later phase to combine the advantages

of vision and language.

tegrated to get comprehensive results in many real-world

applications. How to learn multi-modal representation for

cross-modal data is a fundamental research problem. A tra-

ditional representation method is the canonical correlation

analysis (CCA) [20], which learns a subspace to maximize

the correlation among data of different media types, and is

widely used for modeling multi-modal data [21, 22, 23].

Zhai et al. [24] propose to learn projection functions by the

metric learning, and this method is further improved as Joint

Representation Learning (JRL) [25] by adding other infor-

mation such as semantic categories and semi-supervised in-

formation. Inspired by the progress of deep neural net-

works, some works have been focused on deep multi-modal

representation learning. Ngiam et al. [26] propose a multi-

modal deep learning (MDL) method to combine the audio

and video into an autoencoder, which improves the speech

signal classification for noisy inputs as well as learns a

shared representation across modalities. Recently, a surge

of progress has been made in image and video captioning.

LSTMs [27] are widely used in modeling captions at word

level. Besides LSTMs, character-based convolutional net-

works [28] have been used for language modeling. In this

paper, we apply the extension of Convolutional and Recur-

rent Networks (CNN-RNN) to learn a visual semantic em-

bedding. In this paper, we bring the multi-modal representa-

tion learning into fine-grained image classification to boost

the performance, and jointly modeling vision and language.

3. Our CVL Approach

Our method is based on a very simple intuition: natu-

ral language descriptions could point out the discrimina-

tive parts or characteristics from other sub-categories, and

are complementary with vision information. Therefore, we

propose a two-stream model combining vision and language

for learning latent semantic representations, which takes the

advantages of vision and language jointly, as shown in Fig-

ure. 2. Since the object is crucial for fine-grained image

classification, we take the original images and their object

localizations as the inputs of the two-stream model.

3.1. Object localization

In this paper, we apply an automatic object localization

method based on saliency extraction and co-segmentation

proposed in TSC [4], which allows to localize the object in

a weakly-supervised manner that means neither object nor

part annotations are used. Saliency extraction is to localize

the object preliminarily with the saliency map generated by
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Figure 3. Sample object localization results in this paper. The blue

rectangles indicate the ground truth object annotations, i.e. bound-

ing boxes of objects, and the red rectangles indicate the object

regions generated by jointly applying saliency extraction and co-

segmentation.

the CNN model. However, only through saliency extrac-

tion, the object region is not accurate enough so that co-

segmentation is conducted to make the object region more

accurate for fine-grained image classification. The sample

object localization results are shown in Figure 3.

3.2. Jointly Model Vision and Language

Considering that the two different descriptions of an im-

age are complementary, i.e. visual information and natural

language descriptions, we jointly model the two different

forms of descriptions to learn deep representations for bet-

ter classification accuracy.

3.2.1 Vision Stream

A natural candidate for the visual classification function

f is a CNN model, which is consist of a hierarchy of

convolutional and fully connected layers. We can bene-

fit from model pre-training due to the additional training

data. This has been proved by a large amount of recog-

nition tasks, such as object detection, texture recognition

and fine-grained image classification [29, 30, 31, 32] etc.

Therefore, we use a CNN model pre-trained on the Ima-

geNet dataset [33] as the base model in our experiments.

And then, we fine-tune the pre-trained CNN model on the

fine-grained dataset.

Given an image I , its object region b is generated at ob-

ject localization stage, then the object region is clipped from

the original image and saved as image I ′. We take the orig-

inal image I and its object image I ′ as the inputs of the

CNN model to obtain the prediction, which is the result of

the vision stream.

3.2.2 Language Stream

Deep Structured Joint Embedding We apply the deep

structured joint embedding method [34], because it can

jointly embedding images and fine-grained visual descrip-

tions (i.e. natural language descriptions for images). This

method learns a compatibility function of image and text,

which can be seen as an extension of the multimodal struc-

tured jointed embedding [35]. Instead of using a bilinear

compatibility function, we use the inner product of fea-

tures generated by deep neural encoders, and maximize the

compatibility between a description and its matching image

as well as minimize compatibility with images from other

classes.

Given data D = (vn, tn, yn), n = 1, ..., N , in which

v ∈ V indicates visual information, t ∈ T indicates text de-

scription and y ∈ Y indicates the class label, then the image

and text classifier functions fv : V → Y and ft : T → Y

are learned by minimizing the empirical risk:

1

N

N∑

n=1

∆(yn, fv(vn)) + ∆(yn, ft(tn)) (1)

where ∆ : y × y → R is the 0-1 loss and

fv(v) = argmax
y∈Y

Et∼T (y)[F (v, t)] (2)

ft(t) = argmax
y∈Y

Ev∼V (y)[F (v, t)] (3)

We then define the compatibility function F : V × Y → R

that uses features from the learnable encoder functions θ(v)
for images and φ(t) for texts:

F (v, t) = θ(v)Tφ(t) (4)

We apply the GoogleNet [36] as the image encoder model,

and Convolutional Recurrent Net (CNN-RNN) [34] as the

text encoder model which will be discussed in the next para-

graph.

Text encoder model We apply the CNN-RNN [34] for

learning the fine-grained visual descriptions. A mid-level

temporal CNN hidden layer is at the bottom of CNN-RNN

model, and a recurrent network is stacked on it. We extract

the average hidden unit activation over the sequence as the

text feature, as shown in equation 5. The resulting scoring

function is defined as a linear accumulation of evidence for

compatibility with the image which needs to be recognized.

φ(t) =
1

L

L∑

i=1

hi (5)

where hi indicates the hidden activation vector for the i-th

frame and L indicates the sequence length.
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Category

Heermann

Gull

(1)A large bird with different shades of grey

all over its body, white and black tail feathers,

and a long sharp orange beak.

(2)This bird is gray and black in color, with a

orange beak.

(3)This bird has black outer retices and white

inner retires and an orange beak.

...

Vision Language

Red Legged 

Kittiwake

(1)This bird has a white head, breast and belly

with gray wings, red feet and thighs, and a red 

beak.

(2)This is a white bird with gray wings, red

webbed feet and a red beak.

(3)Long bird with an orange beak and white

feathers with grey colored wings.

...

Bohemian

Waxwing

(1)This bird is light gray with a light orange

patch on its under-tail covets, neck and crown,

and a black malar stripe and nape.

(2)This is a grey bird with a red and yellow

tail and a red face.

(3)This bird has wings that are gray and black

and has a red crown

...

( 1 ) T his bird has a grey body, a white head 

with an orange bill and black wings, tarsus 

and feet.

(2)A white bird with black wings and orange

beak and eyes.

( 3 ) T his white bird has a bright orange bill 

with a black tip.

...

Vision Language

( 1 ) T his white bird has grey wings and tail,

with orange feet and tarsus and a pointed 

yellow bill.

( 2 ) This bird has a mellow yellow bill 

coloration and deep red feet

( 3 ) The bird has a yellow beak with a white

head and orange web feet

...

( 1 ) This colorful bird has an orange crown,

black eyebrows and secondaries with the 

primaries being rimmed in yellow.

(2)This bird is grey with red and has a long,

pointy beak.

(3)The bird has a tan spiked crown and short

bill.

...

Figure 4. Sample natural language descriptions of CUB-200-2011.

3.3. Final Prediction

Given an Image I , its object bounding region is obtained

automatically through localization method. The two-stream

model conducts on the original images and their object lo-

calizations. The vision stream gives the prediction from the

view of the image only, while the language stream gives

the prediction via measuring the image and text description

with the shared compatibility function. Finally, we fuse the

prediction results of the two streams to utilize the advan-

tages of the two via the follow equation:

f(I) = fv(v) + β ∗ ft(t) (6)

where fv(v) and ft(t) are the image and text classifier func-

tions as mentioned above, and β is selected by the cross-

validation method. In the experiments, we set β as 3.

4. Experiments

This section presents the evaluations and analyses of

our CVL approach on the challenging fine-grained image

classification benchmark CUB-200-2011 [7]. It contains

11,788 images of 200 types of birds, 5,994 for training and

5,794 for testing. Every image has detailed annotations: 15

part locations, 312 binary attributes and 1 bounding box.

Scott Reed et al. [34] expand the CUB-200-2011 dataset

by collecting fine-grained visual descriptions. Ten single-

sentence visual descriptions are collected for each image,

as shown in Figure 4. The fine-grained visual descriptions

are collected through the Amazon Mechanical Turk (AMT)

platform, and are at least 10 words, without any information

of species, background and actions.

4.1. Implementation Details

Vision Stream In our experiments, we apply the widely

used model of VGGNet [42] as the vision stream model.

The reason of choosing VGGNet is for fair comparison with

state-of-the-art methods. It is important to note that the

model used in our proposed method can be replaced with

any CNN model. The model is pre-trained on ImageNet

dataset, and then fine-tuned on the CUB-200-2011 dataset.

In the fine-tuning step, we follow the strategy of TL Atten

[2]. First, we apply the selective search [43] to generate

patches for each image. Then the pre-trained CNN model

on ImageNet dataset is used as a filter net for selecting the

patches relevant to the object. With the selected patches, we

fine-tune the pre-trained model.

Language Stream In our experiments, we apply the

GoogleNet [36] with batch normalization [44] as image en-

coder and CNN-RNN [34] as text encoder. For image en-

coder, we take the strategy used in vision stream for better

accuracy. And for text encoder, the CNN input size (se-

quence length) is set to 201 for character-level model. We

keep the image encoder fixed, and used RMSprop with base

learning rate 0.0007 and minibatch size 40. All the con-

figurations and source code 1 used for training and testing

follow the work of Scott Reed et al. [34].

4.2. Comparisons with stateoftheart methods

For comparison purpose, we adopt 12 state-of-the-art

fine-grained image classification methods. Table 1 shows

the comparison results on CUB-200-2011. Bounding box

1https://github.com/reedscot/cvpr2016
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Method
Train Annotation Test Annotation

Accuracy (%)
Bbox Parts Bbox Parts

Our CVL approach 85.55

PD [5] 84.54

Spatial Transformer [37] 84.10

Bilinear-CNN [38] 84.10

NAC [19] 81.01

TL Atten [2] 77.90

VGG-BGLm [39] 75.90

PG Alignment [18]
√ √

82.80

Triplet-A (64) [40]
√ √

80.70

VGG-BGLm [39]
√ √

80.40

Part-based R-CNN [3]
√ √

73.50

SPDA-CNN [41]
√ √ √

85.14

Part-based R-CNN [3]
√ √ √ √

76.37

POOF [14]
√ √ √ √

73.30

GPP [15]
√ √ √ √

66.35
Table 1. Comparisons with state-of-the-art methods on CUB-200-2011, sorted by amount of annotation used. “Our CVL” indicates our full

method combining vision and language. “Bbox” indicates the object annotation (i.e. bounding box of object) provided by the dataset, and

“Parts” indicates the parts annotations (i.e. parts locations). “
√

” indicates that one of bounding box and part locations is used in training

or testing stage. Since the exact amount of annotation used varies from method to method, we defer to the original sources for details.

and part annotations used in the methods are listed for fair

comparison. Early works [14, 15] choose SIFT [45] as fea-

tures, and the performance is limited. When applying CNN

model, our CVL approach is the best. In our experiments,

both object and part annotations are not used, due to label-

ing is heavily labor consuming. Compared with the meth-

ods [37, 38, 19, 2, 5] which do not use object and part an-

notations, our CVL approach obtains a 1.01% higher accu-

racy than the best performing result of PD [5]. Moreover,

our CVL approach outperforms methods which use object

annotation [18] (82.50%) or even part annotations [41, 46]

(85.14%, 76.37%). It proves the effectiveness of our CVL

approach, which jointly integrates the vision and language

streams to exploit the correlation between visual feature and

nature language descriptions and enhance their complemen-

tarity.

4.3. Performances of components in our CVL ap
proach

4.3.1 Effectivenesses of vision stream and language

stream

We perform detailed analyses by comparing different vari-

ants of our CVL approach. “Language-stream” refers to the

classification result of the language stream, “Vision-stream”

refers to the classification result of the vision stream, “CVL”

refers to our CVL approach combining vision and language,

and “Original” refers to the classification result that only

use the original image for prediction. From Table 2, we can

observe that:

• Two-stream model combining vision and language

Method Accuracy (%)

our CVL approach

(Language-stream+Vision-stream)
85.55

Language-stream 81.81

Vision-stream 82.98

Original 76.17

Table 2. Effects of different variants of our method on CUB-200-

2011. “Language-stream” refers to the classification result of the

language stream, “Vision-stream” refers to the classification result

of the vision stream, “CVL” refers to our CVL approach combin-

ing vision and language, and “Original” refers to the classification

result that only use the original image for prediction.

boosts the performance significantly. CVL brings

about a nearly 10% (76.17% → 85.55%) improvement

compared with the “Original”.

• The classification result of the language stream is

promising. From the first line of each row in Figure

5, we can find that the text description with the high-

est score always points out the discriminative parts or

characteristics. As shown in Figure 5 , the red words

are the important visual descriptions for distinguish-

ing sub-categories, and the blue ones are the visual de-

scriptions of the easily confused sub-categories.

• Combining vision and language can achieve more ac-

curate result than only one stream (85.55% vs. 81.81%

and 82.98%), which demonstrates that visual informa-

tion and text descriptions are complementary in fine-
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Category

Sooty

Albatross

(1)This bird has wings that are grey and has a black bill.

(2)This bird is gray in color, with a large curved beak.

(3)This bird is white and brown in color, and has a black beak.

Image Text Rank List(Top3)

California

Gull

(1)This bird has large feet, a short yellow bill, and a black and white body.

(2)This bird has wings that are grey and has a white belly and yellow bill.

(3)This bird has a yellow beak as well as a white belly.

Cerulean

Warbler

(1)A little bird with a short, grey bill, blue crown, nape, white breast.

(2)The bird has a white abdomen, black breast and white throat, blue specks.

(3)This bird is blue and white in color with a black beak, and black eye rings.

Figure 5. Some results of the language stream. The red words are the important visual descriptions for distinguishing sub-categories, and

the blue ones are the visual descriptions of the easily confused sub-categories.

grained image classification. The two streams have the

different but complementary focuses. (1) The vision

stream localizes the object region of image and extracts

the visual features from the original pixels through the

CNN model, which focuses on the location of the dis-

criminative region and the texture, color or even the

semantic parts we called. However, we do not know or

learn correctly which parts or features are the most dis-

criminative representations from other sub-categories.

(2) The language stream learns correlation between the

nature language descriptions and the visual features to

exploit the attributes of the discriminative regions for

distinguishing sub-categories. The natural language

descriptions directly point out key parts or features dis-

tinguished from other sub-categories, e.g. Cerulean

Warbler has blue crown, back and white breast, while

Sooty Albatross has grey wings and black bill.

4.3.2 Effect of fine-tuning and object localization

There are two differences from the work [34]: (1) instead

of directly using the GoogleNet, we first fine-tune it on the

CUB-200-2011, and (2) extract the features of the original

image and its object region for each image. We find that

both (1) and (2) are important for not only fine-grained im-

age classification but also zero-shot recognition, as shown

in Table 3 and Table 4 respectively. It also proves the effec-

tiveness of object localization in vision stream of our CVL

approach, which focuses on the discriminative region of the

image and eliminate the side effect of the background noise.

5. Conclusions

In this paper, the CVL approach has been proposed,

which jointly models vision and language for learning latent

Method Accuracy (%)

Language+ft+box 81.81

Language+ft 77.80

Language 50.54

Table 3. Effect of fine-tuning and object localization for fine-

grained image classification. “ft” indicates fine-tuning is applied,

and “box” indicates object localization is applied.

Method Top-1 Accuracy (%)

DS-SJE+ft+box 65.1

DS-SJE+ft 60.0

DS-SJE [34] 54.0

Table 4. Effect of fine-tuning and object localization for zero-shot

recognition. “ft” indicates fine-tuning is applied, and “box” indi-

cates object localization is applied.

semantic representations. The vision stream learns deep

representations from the original visual information via

deep convolutional neural network. The language stream

utilizes the natural language descriptions which could point

out the discriminative parts or characteristics for each im-

age, and provides a flexible and compact way of encoding

the salient visual aspects for distinguishing sub-categories.

Since the two streams are complementary, combining the

two streams can further achieves better classification ac-

curacy. Experimental results on CUB-200-2011 dataset

demonstrate the superiority of our method compared with

state-of-the-art methods. The results are promising, and

point out a few future directions. First, combining vision

and language can boosts the classification accuracy, but the

two streams are trained respectively, we will focus on the

work of training the two streams end-to-end. Second, from
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Table 3 we can find that small improvement on the orig-

inal language stream boosts the performance a lot. And

nowadays there are a lot of works focusing on how to re-

late images to natural language descriptions. So improving

the performance of the language stream will be significantly

helpful to the fine-grained image classification.
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